The Last Re-Sort:

Improving Production Process of Donated Items

By The Searchandise Team:

Jessica Hwee, McKenna Dawson, John O'Kane, Anthony Liem

Problem Statement

Production process is inefficient and excessively handles donations.

Goals:

- Compare presort to traditional process
- Decrease costs in:
 - Labor, production, transportation, and storage
- Apply lean six sigma techniques to improve both processes

Current State

- Donations are processed as needed at each store with traditional method
- Excess donations are transported to and stored in warehouses before being sorted for quality
- Salvage material remains in system longer than necessary

Evergreen GOCLVIII® - OF NORTHWEST WASHINGTON

Thank you to our sponsors Brent Frerichs, Melinda Gillcrist, and Patty Buchanan!

Hybrid Model Textile Textile **Quality Sort Pricing** Shoes/Accessories Shoes/Accessories **Quality Sort** Pricing Sorted into Donations Categories Dropped Off Go to Store Salvage Floor Wares **Processing** Presort Traditional Linens Processing

System Elements

Retail

Production

Warehouse

Outlet

Data

Collection - Time Studies

- Traditional Shoreline
- 3 iterations at each station
- 20 minute observations
- Stations observed: Textiles, Shoes/Accessories, Wares, Linens
- Presort South Everett
 Recorded:
 - # Salvaged
 - # Priced/moving
 - forward General notes about
 - employee activity

Data Cleaning

- Primary Issues:
 - Outlier Control
- Sample Size
- Not accounting for speed/other factors
- Cleaning Techniques:
 - Outlier Removal
 - Rating Factor
 - Allowance Factor Manager
 - Confirmation

Results

Through Simio analysis, switching to hybrid leads to:

14.7% 11.1% 128.6% 152.9%

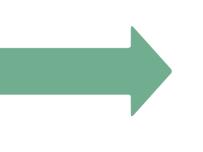
Wares Production Linen Production

Textile Production

Shoes/Acc Production

From traditional From presort

Bottleneck is the textile sorting station with a system utilization of 88%


Simio Model

Ran experiment simulations with 10 replications for 30 days with a warm up period of 10 days to:

Measure:

Number of items sorted and produced by product Labor costs associated

with each sorting method

In Order To:

Select the more efficient practices based on throughput and costs Determine system bottlenecks

Current Models Traditional Method Presort Method [

Apply Most Efficient Features To

Model Hybrid Method

Proposed

Created three different simio models to visualize how the sorting process is affected by fluctuations in donations

Impact

Storage

Space

Transportation Costs

- Less time spent in warehouse
- Higher visibility of inventory

Recommendation

- Implement hybrid sorting process
- Place more experienced workers at the front of production, in sorting stations
- Add a flag at each station to signal for material handlers:
- Minimize employee time away from station
- Maximize utilization of material handlers
- Sort all product for quality, make RTS boxes for all categories, regardless of sorting process